Machine Fault Diagnosis and Prognosis using Self- Organizing Map

نویسندگان

  • Kesheng Wang
  • Zhenyou Zhang
  • Yi Wang
چکیده

This chapter proposes a Self-Organizing Map (SOM) method for fault diagnosis and prognosis of manufacturing systems, machines, components, and processes. The aim of this work is to optimize the condition monitoring of the health of the system. With this method, manufacturing faults can be classified, and the degradations can be predicted very effectively and clearly. A good maintenance scheduling can then be created, and the number of corrective maintenance actions can be reduced. The results of the experiment show that the SOM method can be used to classify the fault and predict the degradation of machines, components, and processes effectively, clearly, and easily.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-organizing Map Approach for Process Fault Diagnosis during Process Transitions

In this paper, we outline a self-organizing map (SOM) based approach to monitor process transitions. The framework integrates SOM with clustering and sequence comparison methods for plant wide monitoring and fault diagnosis. Process abnormality is detected through cluster analysis while syntactic pattern recognition technique and profile sequence comparison techniques render data based fault di...

متن کامل

Visualization of Induction Machine Fault Detection Using Self-Organizing Map and Support Vector Machine

Induction machines play an important role in today’s industries. How to monitoring, detection, classification, and diagnosis of induction machine faults have been the essential problems. Although there have been many methods proposed to deal with these problems, there is lack of visualization tool for understanding the problems more easily. In this paper, a visualization method is proposed to h...

متن کامل

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

Ball Bearing Fault Diagnosis Using Supervised and Unsupervised Machine Learning Methods

This paper deals with the approach of using multiscale permutation entropy as a tool for feature selection for fault diagnosis in ball bearings. The coefficients obtained from the wavelet transformation of the vibration signals of the bearings are used for the calculation of statistical parameters. Based on the minimum multiscale permutation entropy criteria, the best scale is selected and stat...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016